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Project Objective

Determine the economic value of climate and 
weather forecasts to the energy sector



Why aren’t climate forecasts used?

• Climate forecasts are probabilistic in nature – sometimes 
unfamiliar to the user

• Lack of understanding of climate forecasts and their 
benefits

• Language and format of climate forecasts is hard to 
understand – need to be translated for end-users

• Aversion to change – easier to do things the traditional way



CPC Seasonal Outlooks



Importance of Stakeholder Involvement

• Identify potential uses and benefits of forecast information

• Develop forecasts to meet user needs

• Deliver and discuss products with stakeholders

• Obtain feedback from stakeholders and iterate

• Integrate forecasts with decision-making



Key stakeholder questions

• What types of forecast information could help with 
decision-making?

• What are the specifications for desired forecasts?
• What are the organizational incentives and barriers to 

forecast use?
• What are the potential benefits and costs of using the 

forecast information?



Case studies

1. California delta breeze 
2. Peak day load forecasting
3. Irrigation pump loads
4. California summer temperatures
5. Hydropower



1. California "Delta Breeze"

• An important source of forecast load error (CalISO)

• Big events can change load by 500 MW (>1% of total)

• Direct cost of this power: $250K/breeze day (~40 
days/year: ~$10M/year)

• Indirect costs: pushing stressed system past capacity when 
forecast is missed!



NO delta Breeze

Sep 25, 2002: No delta breeze; winds carrying hot air down California
Central valley.  Power consumption high.



Delta Breeze

Sep 26, 2002: Delta breeze starts up; power consumption drops 
>500 MW compared to the day before!



Weather forecasts of Delta Breeze

1-day ahead 
prediction of delta 
breeze wind speed 
from ensemble 
average of NCEP 
MRF, vs
observed.



Statistical forecast of Delta Breeze

(Also uses large-
scale weather 
information) 

By 7am, can make
a determination 
with >95% 
certainty, 50% of 
the time



Dennis Gaushell,
Cal-ISO

<- Warmer than forecast      Colder than forecast ->



Cost of forecast errors



Delta Breeze summary

• Using climate information can do better than dynamic 
weather forecasts

• Possible savings of 10 to 20% in costs due to weather 
forecast error.  Depending on size of utility, will be in 
range of high 100,000s to low millions of dollars/year.



2. Load demand management

• Induce customers to reduce electrical load on peak 
electrical load days 

• Prediction challenge: call those 12 days, 3 days in advance

• Amounts to calling weekdays with greatest "heat index" 
(temperature/humidity)



Why shave peak days?

http://www.energy.ca.gov/electricity/wepr/2000-07/index.html



Price vs. Demand

http://www.energy.ca.gov/electricity/wepr/1999-08/index.html
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Strong year to year variability



Peak day electrical load savings

• If knew electrical loads in advance:           16%

• With event constraints:                               14%

(Load is relative to an average summer afternoon)
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Peak day electrical load savings

• If knew electrical loads in advance:           16%

• With event constraints:                               14%

• If knew temperature in advance:                11%

(Load is relative to an average summer afternoon)



What can climate analysis say?



Peak day electrical load savings

• If knew electrical loads in advance:           16%

• With event constraints:                               14%

• If knew temperature in advance:                11%

• Super simple scheme (24C, 0.5):                  6%

(Load is relative to an average summer afternoon)



Optimizing the process



Peak day summary

• Might ultimately be a real-time program
– Driven by "smart" electric meters
– Main benefit would be avoided cost of peaker

generation plants ~$12M/yr.

• Until then, climate prediction:
– Far less deployment cost 
– Cost of avoided procurement ~$1.3M/yr

-> Climate analysis can give expected benefits to a program



3. Irrigation pump loads

• Electricity use in 
Pacific Northwest 
strongly driven by 
irrigation pumps

• When will the pumps 
start?

• What will total 
seasonal use be?



Irrigation pump start date

Idaho Falls, ID



Pump start date



Total use over summer

Idaho Falls, ID



Total load affected by soil moisture



Predicting summer 
temperature based 
on spring 
temperature



Irrigation load summary

• Buying power contracts 2 months ahead of a high-load 
summer saves $25/MWh (over spot market price)

• Use: about 100,000 MWh

• Benefit of 2 month lead time summer load forecast: $2.5 M



4. Pacific Sea Surface Temperatures



Why the NPO matters

Higher than 
usual pressure 
associated with 
the NPO…

generates 
anomalous 
winds from the 
north west…

…which bring 
more cold, arctic 
air into the 
western U.S. 
during winter



NPO and heating degree days

Positive NPO                                   Negative NPO

Difference is about 150 HDD, or 5% of total HDD





Summer forecast objectives

• Develop forecasts of interest to the CEC

• Focus on: extreme events, strings of hot days, CDD

• Technique: use an advanced statistical approach 
(Canonical Correlation Analysis)



Extreme events

Same temperature
threshold (e.g. 95 °F) =>

Same percentile
threshold (e.g. 95th) =>



Spring SST predicting summer temperatures

CDD                                               Tmax-95th percentile



Relationship PDO => California Summertime Temperatures
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Correlations, Mode 1-PSST, MAM



Contingency Analysis (conditional probabilities):

San Jose  < 331 CDD-JJA > 414 
  BN N AN 

PDO BN 53** 35 12*** 
MAM N 35 36 29 

 AN 12*** 29 59*** 
 

α = 0.01 => ***, 0.05 => **, 0.10 => *

Burbank-
Glendale-
Pasadena 

 < 736 CDD-JJA > 856 

  BN N AN 
PDO BN 53** 29 18* 

MAM N 29 42 29 
 AN 18* 29 53** 

 



Summer CDD when PDO above normal in spring



Pacific SST & CA temperatures summary

• Spring Pacific sea surface temperatures predict summer 
temperature in California

• Above normal PDO is associated with warm CA summers 
(and below normal PDO with cold summers)

• Possible uses of this information include risk reduction, 
and improved planning and reliability



5. Precipitation, Runoff, and Hydropower

• Work done by U.W. hydrology group (Dennis 
Lettenmaier, Alan Hamlet, Nathalie Voisin)

• How much does hydropower production vary given 
realistic climate fluctuations?

• What are the regional implications?



Step 1: Develop climate forcing fields

• Raw station data is biased because stations mostly at low 
altitude, but streamflow influenced by high-altitude 
precipitation

• Can correct for altitude effects

• Period: 1916-2002



Step 1: Develop climate forcing fields



Step 2: Apply to soil/streamflow model

Nathalie Voisin et al., Univ. Washington, 2004





Step 3. Verify streamflow

Nathalie Voisin et al., Univ. Washington, 2004



Step 4. Apply to reservoir model

• ColSim (Columbia Simulation) for the Pacific Northwest

• CVmod (Central Valley model) for Sacramento-San 
Joaquin basin

• Use realistic operating rules:
– Energy content curves (ECC) for allocating hydropower
– US Army Corp of Engineers rule curves for flood prevention
– Flow for fish habitat under Biological Opinion Operating Plan
– Agricultural withdrawal estimated from observations
– Recreational use of Grand Coulee Dam reservoir



Major components of CVmod
Lake Shasta

Lake Trinity

Whiskeytown Reservoir

Lake Oroville

Folsom Lake

Pardee/Camanche Resv.

New Hogan Reservoir

New Melones Reservoir

New Don Pedro Res./Lake 
McClure

Millerton/Eastman/Hensley

Sacramento-San Joaquin Delta

San Luis Reservoir

Flood control, navigation, 
fish conservation

Water supply, hydropower, 
fish conservation

Flood control, hydropower

Flood control, water supply, 
hydropower, water quality, 
environmental conservation

Flood control, water supply, 
hydropower

Flood control, water supply

Flood control, water supply

Flood control, water supply, 
water quality, hydropower
Flood control, water supply

Water supply, recreation

Water supply, water quality

Water supply, hydropower

USBR

USBR

USBR

DWR

USBR

EBMUD

COE

USBR

TMID, MC

USBR, COE

USBR, DWR

USBR, DWR

USBR: 
Bureau of Reclamation

DWR: 
CA Dept Water Resources

EBMUD: 
East Bay Municipal District

MC: 
Merced County

TID: 
Turlock Irrigation District

COE: 
US Army Corp of Engineers

Van Rheenen et al., 
Climatic Change, 2004



Step 5. Hydropower production

Power Generation (megaW - Hr/month) at Shasta (Sacramento R.)
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Hydropower summary

• Strong climate-related year to year variability in CA 
hydropower

• Working on forecasting that variability using same 
techniques that worked for summer temperatures

• Possible benefits of such forecasts include better 
water/hydropower management and reduced costs



Case studies: summary

What is the economic value of climate forecasts to the energy 
sector?

1. Improved bay area and delta breeze forecasts: $100K’s to 
low $millions/yr

2. Peak day load management: ~$1-10M/yr
3. Pump loads: ~$2M/yr
4. Pacific SSTs: benefits of the information might include 

risk reduction, improved reliability, and improved 
planning

5. Hydropower: better water management, reduced costs



Where we could go from here…



Climate variations…

El Nino                              North Pacific Oscillation (NPO)



…affect energy…

supply demand



…and therefore decisions.

Environment vs. Hydropower Urban vs. Agriculture

Long term contracts
vs.

Spot market



Water-Energy interaction

Climate
Forecast

Energy Supply & Demand
Forecast

Water Supply
Forecast

Public and Private
Stakeholders



An Energy-Water Opportunity



An Energy-Water Opportunity

• Water and power are regional issues -- need a broad, 
integrated look at the issue



An Energy-Water Opportunity

• Water and power are regional issues -- need a broad, 
integrated look at the issue

• Water and energy systems already stressed to their limits 
-- climate variations can push things over the edge



An Energy-Water Opportunity

• Water and power are regional issues -- need a broad, 
integrated look at the issue

• Water and energy systems already stressed to their limits 
-- climate variations can push things over the edge

• The pieces to do this problem are already there -- but no 
one has brought them all together yet



An Energy-Water Opportunity

• Water and power are regional issues -- need a broad, 
integrated look at the issue

• Water and energy systems already stressed to their limits 
-- climate variations can push things over the edge

• The pieces to do this problem are already there -- but no 
one has brought them all together yet

• A project whose time has come





http://iri.columbia.edu/climate/forecast/net_asmt/2004/ind
ex.html



http://www.ecmwf.int/products/forecasts/d/charts/seasonal/forecast/charts/groupp/seasonal_charts_public_2tm/



Skill, CCA models



Climate & weather affect energy demand

On a warm 
summer 
afternoon, 40% 
of all electricity 
in California 
goes to air 
conditioning

Source: www.caiso.com/docs/0900ea6080/22/c9/09003a608022c993.pdf



…and also supply

Green et al., COAPS Report 97-1

Typical effects 
of El Nino

California imports 5-10% of its 
electricity from Pacific Northwest 
hydropower -- a dry winter over 
Washington can trigger higher 
summer electricity prices in 
California
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